• nl
  • en
  • Symbionics: Co-Adaptive Assistive Devices

    Increasingly many people rely for their independence on “assistive devices”, i.e. mechatronic systems that are wearable and improve functional capabilities of individuals with disabilities. Traditionally, these assistive devices are adapted to the patient upon delivery. However, during their use, they typically remain static.

    Symbionics logo

    Symbionics logo

    In our view, devices should continuously adapt to the user, according to a therapy plan (e.g. increase support when tiring), to compensate for user changes, (e.g. disease progression), changing environment (e.g. walking on different floor type), or changing tasks (e.g. stiffening during certain activities). We will call this “co-adaptivity”. The objective of this program is to create systems that co-adapt automatically, which is expressed in the term “symbionic”, either intrinsically by design, or by control, or their combination. Furthermore, we aim to create assistive devices that completely fit underneath regular clothing, which is key to social acceptance. Achieving these objectives will require a mind shift in rehabilitation and technology. The program is designed such that the end-users have a central role in defining the requirements and priorities for developing the assistive devices. The present program includes all the necessary expertise areas: rehabilitation medicine, human movement science, modelling and control, and mechanical engineering. The focus of the program will be on manipulative tasks (arm and hand motion augmentation), body supportive tasks (trunk and head balance) and form adaptation (redressing and ulcer prevention). New technology will be developed, while selected applications will be developed for clinical pilots.

    The aim of this program:

    • The aim of the symbionics program is to develop assistive devices that adapt to the user and adapt to the environment, depending on the task. The scientific challenges lie in understanding
    • how the individual adapts (human adaptation);
    • how the mechanical properties of the assistive device should shift in order to support this optimally (mechanical adaptation);
    • how the control of the device can be made task and intention dependent (adaptive control);
    • how these three aspect interact.

     

    The symbionics program is divided into six projects, as showed below. Four of these projects are SPRINT related.
    For specific project details, please click  on the read more link.

    1. ADAPT (SPRINT related) read more
    (Project leader: Kenneth Meijer, PhD, Maastricht University Medical Centre)

    2. Robotic Simulation of Advanced Hand
    (Project leader: dr.ir. Arno Stienen, University of Twente)

    3. Intention Amplifying in Hand Orthoses
    ( Project leader: dr.ir. Dick Plettenburg, Technical University Delft)

    4. Co-adaptive support of trunk and head in relation to arm  movements (SPRINT related) read more
    (Project leader: Imelda JM de Groot, associate professor, rehabilitation physician, Radboud University Nijmegen Medical Centre)

    5. Club foot orthosis (SPRINT related) read more
    (Project leader: prof.dr.ir. G.J. Verkerke, University of Twente, dept. of Biomechanical Engineering)

    6. Dynamic ulcer prevention device (SPRINT related) read more
    (Project leader: Prof.dr. K. Postema, Department for Rehabilitation Medicine UMCG)

    To see the total overview of the symbionics program, click here.

    Cooperation

    Program leader:
    Prof.Dr.Ir. H.F.J.M. Koopman, Biomechanical Engineering, University of Twente

     

    Project coordinator:
    ir. Arjen Bergsma, Flextension Foundation

     

    Applying research institutes:

    – University of Twente: Biomechanical Engineering, Biomedical

    Signals & Systems

    – TU Delft: Precision & Microsystem Engineering, Biomechanical

    Engineering

    – VU University: Physics and Medical Technology, Movement

    Sciences, Orthopaedics

    – Radboud University Nijmegen Medical Centre: Rehabilitation

    – University Medical Centre Groningen: Biomedical Product Design, Rehabilitation Medicine and Human Movement Sciences

    – Maastricht University Medical Centre: Human Movement Sciences

     

    Potential users:

    – Knowledge institutes: Roessingh R&D, Adelante and Pontes

    Medical

    – Companies: Focal Meditech, Baat Medical, Intespring, Maastricht

    Instruments, XSens, Hocoma, Moog, Hankamp Rehab, Dr

    Comfort, VTEC Laser & Sensors, Festo and Ortin

    – Other organisations: Duchenne Parent Project, FSHD

    Foundation, Foundation to Eradicate Duchenne, Parent Project

    Muscular Dystrophy, Spierziekten Nederland and Dwarslaesie

    Organisatie Nederland

     

    The symbionics program was initiated by the Flextension Foundation, for more information visit the website: www.flextension.nl

    Subsidy

    stw